

I. NOTICE OF INTENT STATUS (see Instructions)

State Water Resources Control Board

Division of Water Quality

1001 I Street • Sacramento, California 95814 • (916) 341-5455 Mailing Address: P.O. Box 100 • Sacramento, California • 95812-0100 FAX (916) 341-5463 • Internet Address: http://www.swrcb.ca.gov

ATTACHMENT A

NOTICE OF INTENT

WATER QUALITY ORDER NO. 2013-0002-DWQ GENERAL PERMIT NO. CAG990005

STATEWIDE GENERAL NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT FOR RESIDUAL AQUATIC PESTICIDE DISCHARGES TO WATERS OF THE UNITED STATES FROM ALGAE AND AQUATIC WEED CONTROL APPLICATIONS

MARK ONLY ONE ITEM	M	A. New App	olicator B.	Change of Info	rmation for WD	ID # 9000001287
		C. Change o	of Ownership or re	esponsibility WDII	D#	
			-			
I. CONTROL AGENCY I	NFOR	MATION				
A. Name County of Orange - OC Pu	ıblic Wa	orks				
County of Orange OC 1	aone w	JIK3				
B. Mailing Address						
2301 N. Glassell St.						
C. City		D. County		E. State	F. Zip	
Orange		Orange		California	92865	
G. Contact Person	H. Titl		I. E-mail addı			J. Phone
Victor Valdovinos, PE	Mgr.,	O&M	Victor.Va	ldovinos@ocpw.o	cgov.com	714.955.0221
			•			
II. BILLING ADDRESS (Enter I	nformation <u>only</u> i	f different from	Section II above)		
A. Name						
B. Mailing Address						
B. Walling Madiess						
E. City		F. County		E. State	F. Zip	
G. Contact Person	H. Titl	e	I. E-mail addı	ress	•	J. Phone
						1

V. RECE	IVING WATER INFORMATION	
A. Alga	ecide and aquatic herbicides are used to treat (check all that apply):	
1.	Canals, ditches, or other constructed conveyance facilities owned and controlled by Discharger Name of the conveyance system: County Flood Control System	
2. 🖾	Canals, ditches, or other constructed conveyance facilities owned and controlled by an entity other Owner's name: Contracted Cities Name of the conveyance system: Flood Control System	than the Discharger
3. 🖾	Directly to river, lake, creek, stream, bay, ocean, etc. Name of water body:County Flood Control System, Pacific Ocean	
(RE	Water Quality Control Board(s) where treatment areas are located GION 1, 2, 3, 4, 5, 6, 7, 8, or 9): Region_8 and Region 9 regions where algaecide and aquatic herbicide application is proposed.)	
'. ALGAI	ECIDE AND AQUATIC HERBICIDE APPLICATION INFORMATION	
A. Targe	t Organisms: Algae, submersed, floating and emergent aquatic vegetation	
B. Alga	necide and Aquatic Herbicide Used: List Name and Active ingredients	
Endotha Fluridor Glyphos Imazam Imazapy Penoxsu Sodium Triclopy	Dibromide (Reward®) full (Cascade®) full (Casc	
	d of Application: Start Date: 12/1/2013 End Date: 11/30/2018 s of Adjuvants Used:	
-	is non-ionic surfactants (Examples include, but not limited to: AgriDex, Silicone Super Wetter,	etc)
I. AQUA	TIC PESTICIDES APPLICATION PLAN	
Has Aqu	atic Pesticides Application Plan been prepared and is the applicator familiar with its contents?	Yes ⊠ No □
If not, w	hen will it be prepared?	

Have potentially affected public and gove	rnmental agencies been notified?	Yes ⊠ No □	
III. FEE			
B. Have you included payment of the filin	g fee (for first-time enrollees only) with	n this submittal? YES NO	NA
X. CERTIFICATION			
submitted is, to the best of my knowledge	and belief, true, accurate, and complete possibility of fine or imprisonment. A enting a monitoring program, will be co	nsible for gathering the information, the information. I am aware that there are significant penalties for dditionally, I certify that the provisions of the Geromplied with." Date:	r
WDID:	Date NOI Received:	Date NOI Processed:	
Case Handler's Initial:	Fee Amount Received:	Check #:	
☐ Lyris List Notification of Posting	Date	Confirmation Sent	

VII. NOTIFICATION

Orange County Public Works

Aquatic Pesticide Application Plan (APAP)

For the

Statewide General National Pollutant Discharge Elimination

System (NPDES) Permit for Residual Aquatic Pesticide Discharges
to Waters of the United States from Algae and Aquatic Weed

Control Applications

Water Quality Order No. 2013-0002-DWQ
General Permit # CAG990005

August 30, 2013

Prepared for:

Orange County Public Works 2301 N. Glassell Street Orange, CA 92865 Contact: Cort Distanislao (714) 448-2832

Prepared by:

Blankinship & Associates, Inc. 1590 Drew Avenue, Suite 120 Davis, CA 95618 Contact: Stephen Burkholder (530) 757-0941

Submitted to:

State Water Resources Control Board

1001 | Street

Sacramento, CA 95814 Contact: Russell Norman (916) 323-5598

Santa Ana Regional Water Quality Control Board 3737 Main Street, Suite 500 Riverside, CA 92501-3348 (951) 782-4130

And

San Diego Regional Water Quality Control Board 9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340 (858) 467-2952

CERTIFICATION

"I certify under penalty of law that this document and all attachments were prepared under my direct supervision in accordance with a system designed to insure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment".

Signed and Agreed:

Cort Distanislao

Vegetation Control Specialist

County of Orange - OC Public Works

Muchen for Outer U. Victor Valdovinos, P.E.

Manager of Operations and Maintenance

County of Orange - OC Public Works

Stephen Burkhólder Project Biologist

Blankinship & Associates, Inc.

Michael S. Blankinship

Licensed Professional Engineer (Civil) #C64112

Pest Control Advisor # 75890

Blankinship & Associates, Inc.

Orange County Public Works Aquatic Pesticide Application Plan (APAP)

Statewide General National Pollutant Discharge Elimination System (NPDES) Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications

Water Quality Order No. 2013-0002-DWQ

General Permit # CAG990005

Table of Contents

Aquatic Pesticide Application Plan	5
Element 1: Description of the Water System	9
Element 2: Description of the Treatment Area	9
Element 3: Description of Weeds and Algae	9
Element 4: Algaecides and Aquatic Herbicides Used, Known Degradation Byproducts,	
Application Methods and Adjuvants	9
Element 5: Discussion of Factors Influencing Herbicide Use	10
Element 6: Gates and Control Structures	11
Element 7: State Implementation Policy (SIP) Section 5.3 Exception	13
Element 8: Description of Monitoring Program	13
8.1 Data Collection	13
8.2 Monitoring Locations and Frequency	18
8.3 Sample Collection	21
8.4 Field Measurements	21
8.5 Sample Preservation and Transportation	21
8.6 Sample Analysis	22
8.7 Reporting Procedures	22
8.8 Sampling Methods and Guidelines	23
8.9 Field Sampling Operations	25
8.10 Quality Assurance and Quality Control (QA/QC)	27
Element 9: Procedures to Prevent Sample Contamination	31
Element 10: Description of BMPs	31
10.1 Measures to Prevent Spills and Spill Containment in the Event of a Spill	31
10.2 Measures to Ensure Appropriate Use Rate	32
10.3 The Discharger's plan in educating its staff and herbicide applicators on how to avoid	d
any potential adverse effects from the herbicide applications	33
10.4 Application Coordination to Minimize Impact of Application on Water Users	
10.5 Description of Measures to Prevent Fish Kills	
Element 11: Examination of Possible Alternatives	34
11.1 Evaluation of Other Management Options	34
11.2 Using the Least Intrusive Method of Aquatic Herbicide Application	37
11.3 Applying a decision matrix concept to the choice of the most appropriate formulation	on.
	37
References	38

List of Tables

Table 1 Aquatic Herbicides Used
Table 2 Required Sample Analysis

List of Figures

Figure 1 Orange County Drainage Map
Figure 2 Aquatic Herbicide Application Log

Figure 3 Aquatic Herbicide Field Monitoring & Sampling Form (Moving Water)
Figure 4 Aquatic Herbicide Field Monitoring & Sampling Form (Static Water)

Appendix A

RWQCB Region 8 and Region 9 Detailed Drainage Map and Legends

Aquatic Pesticide Application Plan

In March 2001, the State Water Resources Control Board (SWRCB) prepared Water Quality Order # 2001-12-DWQ which created Statewide General National Pollutant Discharge Elimination System (NPDES) Permit # CAG990003 for the discharges of aquatic herbicides to waters of the United States. The purpose of Order # 2001-12-DWQ was to minimize the areal extent and duration of adverse impacts to beneficial uses of water bodies treated with aquatic herbicides. The purpose of the general permit was to substantially reduce the potential discharger liability incurred for releasing water treated with aquatic herbicides into waters of the United States. The general permit expired January 31, 2004.

On May 20, 2004 the SWRCB adopted the statewide general NPDES Permit for Discharge of Aquatic Pesticides for Aquatic Weed Control in Waters of the United States #CAG 990005. Dischargers were required to have the general permit to perform aquatic herbicide applications. In May 2009, the general permit expired, but was administratively continued until November 30, 2013.

The Statewide General NPDES Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications (herein referred to as the "Permit") was adopted on March 5, 2013 and will become available on December 1, 2013 (SWRCB 2013). The Permit requires compliance with the following:

- The Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries in California, a.k.a. the State Implementation Plan, or SIP (SWRCB 2000)
- The California Toxics Rule (CTR)
- Applicable Regional Water Quality Control Board (RWQCB) Basin Plan Water Quality Objectives (WQOs) (CVRWQCB 2003)

Coverage under the Permit is available to single dischargers and potentially to regional dischargers for releases of potential and/or actual pollutants to waters of the United States. Dischargers eligible for coverage under the Permit are public entities that conduct resource or pest management control measures, including local, state, and federal agencies responsible for control of algae, aquatic weeds, and other organisms that adversely impact operation and use of drinking water reservoirs, water conveyance facilities, irrigation canals, flood control channels, detention basins and/or natural water bodies.

The Permit does not cover indirect or non-point source discharges, whether from agricultural or other applications of pesticides to land, that may be conveyed in storm water or irrigation runoff. The Permit only covers algaecides and aquatic herbicides that are applied according to label directions and that are registered for use on aquatic sites by the California Department of Pesticide Regulation (DPR).

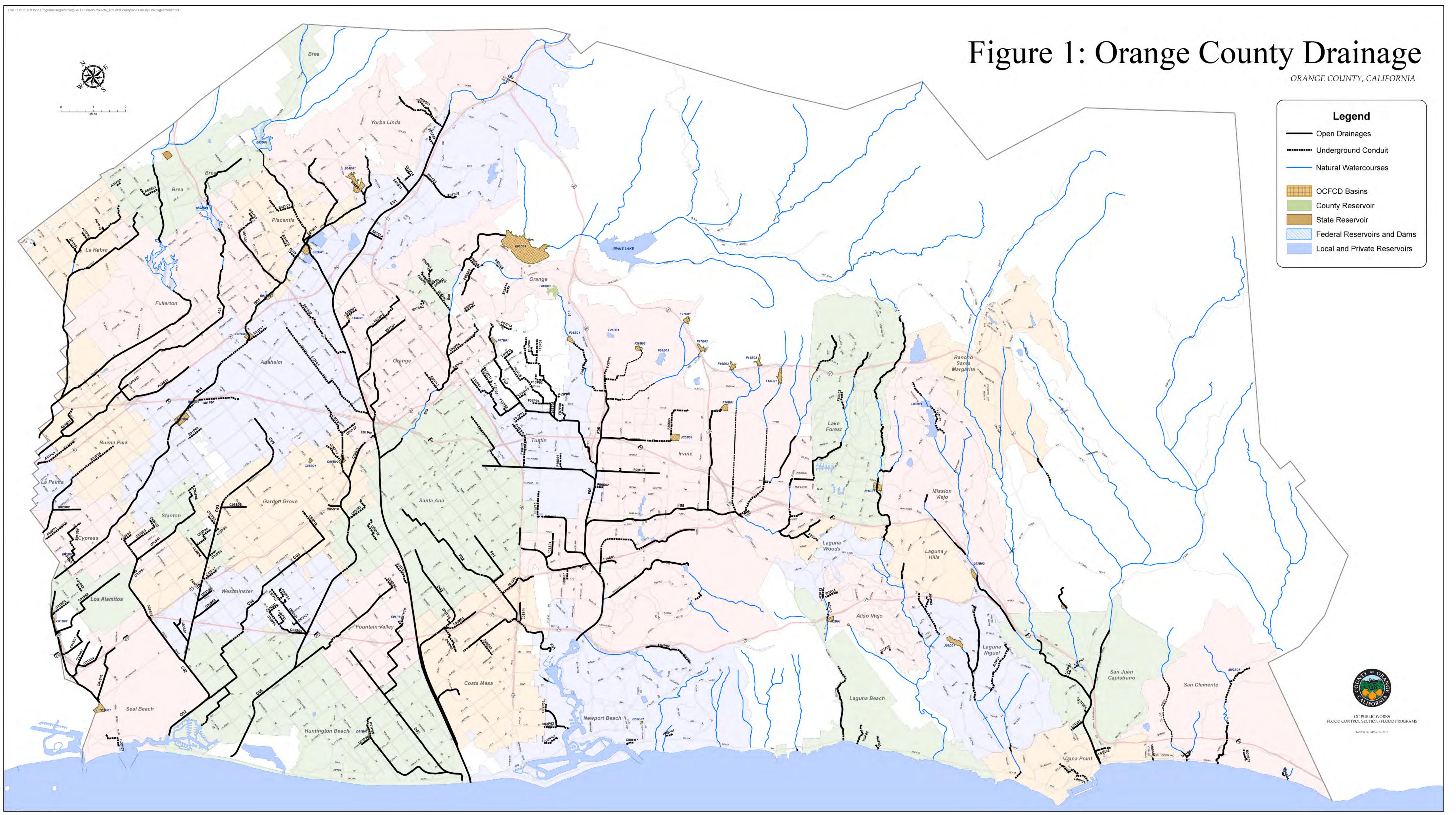
Orange County Public Works (herein referred to as "OC Public Works") maintains the county flood control system, and various other water conveyance facilities. The Flood Control System and other water facilities are within the boundaries of Region 8 and Region 9 of the Regional Water Quality Control Board. OC Public Works oversees maintenance and operations of these facilities throughout Orange County. Nuisance aquatic vegetation grows in and along creeks, streams, the flood control system, and other drainage conveyances. Aquatic vegetation limits the effective conveyance of stormwater. As such, OC Public Works has determined the need to use aquatic herbicides to control problem aquatic vegetation.

The "project", as defined by the Permit, is the use of algaecides and aquatic herbicides to control algae and aquatic vegetation.

OC Public Works has previously applied aquatic herbicides using the State Water Resource Control Board (SWRCB) Statewide General National Pollutant Discharge Elimination System (NPDES) Permit #CAG990005 for the Discharge of Aquatic Pesticides for Aquatic Weed Control in Waters of the United States ("permit"). This permit will expire on December 1, 2013 and will be replaced by a new permit.

Using Integrated Pest Management (IPM) techniques, OC Public Works intends to apply algaecides and aquatic herbicides identified in the Notices of Intent to Comply (NOI) submitted to the RWQCBs. For the purposes of applying to, and complying with, the 2013 Permit, OC Public Works has created this APAP.

This APAP is a comprehensive plan developed by OC Public Works that describes the project, the need for the project, what will be done to reduce water quality impacts, and how those impacts will be monitored. Specifically, this APAP contains the following eleven (11) elements.


- 1. Description of the water system to which algaecides and aquatic herbicides are being applied;
- 2. Description of the treatment area in the water system;
- 3. Description of types of weed(s) and algae that are being controlled and why;
- 4. Algaecide and aquatic herbicide products or types of algaecides and aquatic herbicides expected to be used and if known their degradation byproducts, the method in which they are applied, and if applicable, the adjuvants and surfactants used;
- 5. Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control;
- 6. If applicable, list the gates or control structures to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and provide an inspection schedule of those gates or control structures to ensure they are not leaking;
- 7. If the Discharger has been granted a short-term or seasonal exception under State Water Board Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (Policy) section 5.3 from meeting acrolein and copper receiving water limitations, provide the beginning and ending dates of the exception period, and justification for the needed time for the exception. If algaecide and aquatic herbicide applications occur outside of the exception period, describe plans to ensure that receiving water criteria are not exceeded because the Dischargers must comply with the acrolein and copper receiving water limitations for all applications that occur outside of the exception period;
- 8. Description of monitoring program;
- 9. Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application;
- 10. Description of the Best Management Practices (BMPs to be implemented. The BMPs shall include, at the minimum:

- 10.1. Measures to prevent algaecide and aquatic herbicide spill and for spill containment during the event of a spill;
- 10.2. Measures to ensure that only an appropriate rate of application consistent with product label requirements is applied for the targeted weeds or algae;
- 10.3. The Discharger's plan in educating its staff and algaecide and aquatic herbicide applicators on how to avoid any potential adverse effects from the algaecide and aquatic herbicide applications;
- 10.4. Discussion on planning and coordination with nearby farmers and agencies with water rights diversion so that beneficial uses of the water (irrigation, drinking water supply, domestic stock water, etc.) are not impacted during the treatment period; and
- 10.5. A description of measures that will be used for preventing fish kill when algaecides and aquatic herbicides will be used for algae and aquatic weed controls.
- 11. Examination of Possible Alternatives. Dischargers should examine the alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides. Such methods include:
 - 11.1. Evaluating the following management options, in which the impact to water quality, impact to non-target organisms including plants, algaecide and aquatic herbicide resistance, feasibility, and cost effectiveness should be considered:
 - 11.1.1. No action;
 - 11.1.2. Prevention;
 - 11.1.3. Mechanical or physical methods;
 - 11.1.4. Cultural methods;
 - 11.1.5. Biological control agents; and
 - 11.1.6. Algaecides and aquatic herbicides;

If there are no alternatives to algaecides and aquatic herbicides, Dischargers shall use the minimum amount of algaecides and aquatic herbicides that is necessary to have an effective control program and is consistent with the algaecide and aquatic herbicide product label requirements.

- 11.2. Using the least intrusive method of algaecide and aquatic herbicide application; and
- 11.3. Applying a decision matrix concept to the choice of the most appropriate formulation.

This APAP is organized to address the aforementioned 1 through 11 elements.

Element 1: Description of the Water System

The surfacewater conveyance system maintained by OC Public Works includes a large network of storm water collection facilities, detention basins, creeks, rivers, lined and unlined stormwater channels and streams to convey urban runoff and stormwater. OC Public Works maintains the system to ensure efficient conveyance of water where flood control and stormwater flows are of concern. OC Public Works also maintains creeks, rivers and streams throughout the county to minimize the impact of nonnative invasive species, and efficient conveyance of stormwater. OC Public Works's drainage system receives urban runoff and drainage throughout the year, and stormwater runoff during wet months.

OC Public Works manages channels in Region 8 and Region 9. The conveyances managed in Region 8 include: Coyote Creek Channel, Fullerton Creek Channel, La Mirada Creek Channel, Carbon Creek Channel, Moody Creek Channel, Los Alamitos Channel, Bolsa Chica Channel, E. Garden Grove/Wintersberg Channel, Sunset Chanel, Talbert Channel, Santa Ana River, Santa Ana / Delhi Channel, San Diego Creek Channel, Peters Canyon Channel, Harbor View Dam, East Costa Mesa Channel, Santa Isebella Channel, Bluebird Storm Drain, and Laguna Canyon Channel.

OC Public Works also manages various channels in Region 9. The conveyances managed in Region 9 include: Aliso Creek Channel, Salt Creek Channel, Niguel Storm Drain, San Juan Creek Channel, Marquita Storm Channel, Prima Deshecha Canada, and Segunda Deshecha Canyon Channel.

Refer to Figure 1 and the detailed drainage map and legends included in Appendix A.

Element 2: Description of the Treatment Area

OC Public Works may apply algaecides or aquatic herbicides to any or all of the flood control facilities described in Element 1 if aquatic vegetation treatment thresholds are met.

Element 3: Description of Weeds and Algae

Weeds found throughout the conveyances include emergent, and floating weeds, Emergent and floating vegetation species recently noted in the system include Mexican fan palm (washingtonia robusta), Tree tobacco (Nicotiana glauca), Castor Bean (Ricinus communis), Giant Reed (Arundo donax), Tamarisk (Tamarix sp), Pampas Grass (Cortaderia sellona), Mustard (Brassica), Bristly Ox Tongue (Picris echioides), Artichoke Thistle (Cynara cardunculus, Prickly Lettuce (Lactuca seriola), and others.

The presence of these weeds and others in flowing waterways can adversely impact water flow, and reduce flood or stormwater capacity. Nuisance aquatic vegetation grows in and along creeks, streams, the flood control system, and other drainage conveyances and limits the effective conveyance of stormwater.

Element 4: Algaecides and Aquatic Herbicides Used, Known Degradation Byproducts, Application Methods and Adjuvants

Table 1 summarizes the algaecides and aquatic herbicides that may be used by OC Public Works.

Table 1: Algaecides and Aquatic Herbicides Expected to be Used

Herbicide	Application Method(s)	Adjuvant
2,4-D	Backpack sprayer, handgun, or boom sprayer	Various aquatic-labeled adjuvants
Diquat Dibromide	Submersed boom, handgun, or boom sprayer	Various "Aquatic"-labeled adjuvants
Endothall	Submersed boom/injection, handgun or boom sprayer, or spreader (granules)	Not Applicable
Fluridone	Submersed boom, or spreader	Not Applicable
Glyphosate	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic"-labeled adjuvants
Imazamox	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic"-labeled adjuvants
Imazapyr	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic"-labeled adjuvants
Penoxsulam	Backpack sprayer, handgun, or boom sprayer	Not Applicable
Sodium Carbonate Peroxyhydrate	Handgun, boom sprayer (liquid), or spreader (granules)	Not Applicable
Triclopyr	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic"-labeled adjuvants

As required, aquatic-labeled adjuvants may be used to enhance the efficacy of an herbicide. Currently, OC Public Works only uses adjuvants that are not nonylphenol-based but may consider other adjuvants at a later time.

All herbicide applications are made in accordance with the product label.

Element 5: Discussion of Factors Influencing Herbicide Use

Treatment of aquatic vegetation by OC Public Works is determined by the application of IPM. One of the primary operational goals of the IPM program is to establish a general and reasonable set of control measures that not only aid in managing aquatic vegetation populations, but also address public health & safety, economic, legal, and aesthetic requirements. An action threshold level is the point at which action should be taken to control aquatic vegetation before the drainage feature is significantly impacted; moreover, established action threshold levels may change based on public expectations. A central feature of IPM is to determine when control action is absolutely necessary and when it is not, for the presence of some aquatic vegetation species may be a sign of a well-balanced, flourishing ecosystem. Examples of when or how thresholds are met are when vegetation impedes flow, decreases capacity, or creates a nuisance. Typical problems associated with aquatic vegetation are adverse impacts to water quality or a reduction in flood control capabilities. If vegetation equals or exceeds a threshold, a control method is implemented. Control methods implemented by OC Public Works may include mechanical, cultural controls, biological, and/or chemical, consistent with IPM techniques. Aquatic herbicide use may or may not be employed as a last resort control method, and is considered a critical part of the IPM program. For some aquatic weed varieties, herbicides offer the most effective (i.e. longlasting or least labor intensive) control; sometimes, they may be the only control available.

Aquatic herbicide applications may also be made prior to threshold exceedance. For example, based on predicted growth rate and density, historical aquatic weed trends, weather, water flow, and experience, aquatic weeds may reasonably be predicted to cause future problems. Accordingly, they may be treated soon after emergence or when appropriate based on the aquatic herbicide to be used. Even though aquatic weeds may not be an immediate problem at this phase, treating them before they mature reduces the total amount of aquatic herbicide needed because the younger aquatic weeds are more susceptible and there is less plant mass to target. Furthermore, treating aquatic weeds within the ideal time frame of its growth cycle ensures that the selected control measures will be most effective. Managing aquatic weed populations before they produce seeds, tubers or other reproductive organs is an important step in a comprehensive aquatic weed control program. Generally, treating aquatic weeds earlier in the growth cycle results in fewer controls needed and less total herbicide used. Selection of appropriate aquatic herbicide(s) and rate of application is done based on the identification of the aquatic weed, its growth stage and the appearance of that aquatic weed on the product label as a plant it controls.

The selection of and decision to use an aquatic herbicide is based on the recommendation of a California Department of Pesticide Regulation (CDPR)-licensed Pest Control Advisor (PCA). The PCA considers a variety of control options that may include mechanical and/or cultural techniques that alone or in combination with aquatic herbicide use are the most efficacious and protective of the environment.

Evaluating alternative control techniques is part of the IPM approach use by OC Public Works; therefore an alternative treatment may be selected as part of a test program. Alternative control techniques include mechanical removal (i.e. manually, or with an excavator), grazing and/or native species establishment. A more detailed description of each of these is presented in Element 10 and Element 11 of this document.

In general, alternative control techniques are more expensive, labor intensive, not as effective, may cause temporary water quality degradation, and/or further spread aquatic weeds. The equipment and labor required to perform these techniques is not always readily available. This may cause delays in removal leading to increased plant material to remove and increased cost.

Element 6: Gates and Control Structures

OC Public Works operates and maintains several gates and water control structures throughout its facilities. As applicable or necessary, OC Public Works staff will manage gates, valves or other structures during an algaecide or aquatic herbicide application to control the extent, if any, that receiving waters will be affected by residual algaecides or aquatic herbicides.

To evaluate the presence of leaks, control structures within the treatment area will be inspected prior to and during the application. **Figure 2**, Aquatic Herbicide Application Log is the form used to document this inspection. If leaks develop on closed valves or gates, they will be stopped as soon as practicable.

ig.2 Aquatic Herbicide Application Log rev 8.26.13

IMPORTANT To Be Completed EVERY TIME an Aquatic Herbicide Application is Made I. GENERAL If NO Location Start Time Stop Time Date __ applications Agency _____ Personnel made this month, check Weather here and list Total Area Treated (Ac or linear ft) Target Weed(s) month:____ II. PESTICIDE & ADJUVENT INFORMATION _____ Rate or Target Concentration: ___ Herbicide #1 Used: ___ Total Amt Applied _____Rate or Target Concentration: _____Total Amt Applied___ Herbicide #2 Used: ____Total Amt Applied___ Rate or Target Concentration: Adjuvant #1 Used: ___ Rate or Target Concentration: Total Amt Applied Adjuvant #2 Used: ___ Method of Application: ______ Application Made With water flow / Against water flow / Not Applicable (Circle One) III. TREATED WATERBODY INFORMATION Waterbody type (Circle One: lined canal, unlined canal, creek, drain, ditch, reservoir, lake, pond) Other: Water flow (ft/sec, cfs) _____ Water Depth (ft): ____ Water temperature (F): ___ Sheen: (circle one) yes Percent weed cover Color: (circle one) none brown green other:______ Clarity (circle one) poor fair good Other Information: ____ IV. POST TREATMENT EFFICACY & IMPACT Describe post treatment efficacy (circle one) poor fair good unknown Describe any impacts to water quality (circle one) none some significant unknown If other than "none" or "unknown", describe: _ V. GATES, WEIRS, CHECKS OR OTHER CONTROL STRUCTURES (ONLY FILL OUT IF APPLICABLE) A. Are there any gates or control structures in the treatment area that may discharge to streams, rivers, lakes, or other natural waterways? Yes No N/A (If the answer to question A is Yes then answer questions B-F the Table below, otherwise leave blank) B. Have flow control structures been closed & sealed to prevent aquatic pesticide from discharging to Yes Nο natural waterways? C. Have necessary flow control structures been inspected for leaks? Yes No D. If leaks were found, were they sealed or otherwise prevented from allowing water to discharge to natural waterways prior to application? Yes No During Application E. Were necessary flow control structures inspected for leaks? Yes No F. If leaks developed, was the application stopped until the leak could be sealed or prevented from allowing water to discharge to natural waterways? No Yes If the answer of any of the above questions is No, explain: Time Closed Time Opened Gate How was time opened determined: VI. CERTIFICATION (print name) certify that the APAP has been followed (sign here): X

Element 7: State Implementation Policy (SIP) Section 5.3 Exception

The Permit allows OC Public Works to apply for a SIP Section 5.3 Exception for the use copper or acrolein. If an exception is granted, this section will be amended to describe the exception period as outlined in the required CEQA documentation.

OC Public Works does not currently have a SIP exception and does not anticipate copper or acrolein applications. Should the use of copper or acrolein products be needed, OC Public Works will coordinate with appropriate Regional Water Quality Control Board (RWQCB) and SWRCB staff to obtain a SIP exception as necessary and in accordance with Permit requirements.

Element 8: Description of Monitoring Program

Attachment C of the Permit presents the Monitoring and Reporting Program (MRP). The MRP addresses two key questions:

Question No. 1: Does the residual algaecides and aquatic herbicides discharge cause an exceedance of the receiving water limitations?

Question No. 2: Does the discharge of residual algaecides and aquatic herbicides, including active ingredients, inert ingredients, and degradation byproducts, in any combination cause or contribute to an exceedance of the "no toxics in toxic amount" narrative toxicity objective?

Attachment C of the Permit provides MRP guidelines that OC Public Works will use to meet the aforementioned goals.

8.1 Data Collection

Visual monitoring will be performed for all algaecide and aquatic herbicide applications at all sites and be recorded by qualified personnel.

Figure 2 (Aquatic Pesticide Application Log) or its equivalent, **Figure 3** (Aquatic Herbicide Field Monitoring & Sampling Form MOVING Water) or its equivalent or **Figure 4** (Aquatic Herbicide Field Monitoring & Sampling Form STATIC Water) will be used.

Page 1/3

Aquatic Herbicide Field Monitoring & Sampling Form – Moving Water

IMPORTANT Attach Relevant Aquatic Herbicide Application Log (AHAL) Form

Agency:				_ Site Name:		
SAMPLE #1: Back Collect upstream of, or area before treatment				Sampler Name:		
Draw Sample Location an points of reference	d inclu	de ide	ntifiable	Herbicide Applied (Surfactants?): Approximate Water Speed (ft/sec): Sample Waypoint or GPS Coordinates		
				Target Vegetation:		
Ņ				DO (mg/L): EC (μs/cm)		
🐧	†			pH: Turbidity (NTU):		
Scale: 1"~				Temp (*C):		
Do you notice	YES	No	Unknown	IF YES, DESCRIBE YOUR OBSERVATIONS		
Floating Material						
Settleable Substances						
Suspended Material						
Taste and Odors						
Water coloration						
Aquatic Community Degradation						

Page 2/3

Aquatic Herbicide Field Monitoring & Sampling Form – Moving Water

Agency:			Sit	e Name:		
SAMPLE # 2: Eve	ent M	onit	oring (E	Event)		
Collect immediately down area shortly after apsufficient time has elapswater would have exited. The timing for the collewill be a site-specific flow rates and size of and duration of treatments.	plicationsed such the testion of the testion of the testiman the ap	on, b ch tha reatm of this tion b	out after at treated ent area. s sample based on	Sampler Name: Date: Time: Sample Waypoint or GPS Coordinates		
Draw Sample Location and include identifiable points of reference N Scale: 1"~			ntifiable	Approximate Water Speed (ft/sec): Length of Treated Area (ft): Application Start Date: Start Time: Application End Date: End Time: Application made with or against water flow? (Circle One) DO (mg/L): EC (µs/cm) pH: Turbidity (NTU): Temp (*C):		
Do you notice	YES	No	UNKNOWN	IF YES, DESCRIBE YOUR OBSERVATIONS		
Floating Material						
Settleable Substances						
Suspended Material						
Taste and Odors						
Water coloration						
Aquatic Community Degradation						

Page 3/3

Aquatic Herbicide Field Monitoring & Sampling Form – Moving Water

Agency:				Site Name:			
SAMPLE # 3:				Sampler Name:			
Post-Event Monit	oring	g (P	ost)	Date: Time:			
Collect in treatment area within 7 days of application			days	Sample Waypoint or GPS Coordinates			
Draw Sample Location and include identifiable points of reference				Approximate Water Speed (ft/sec): DO (mg/L): EC (μs/cm) pH: Turbidity (NTU): Temp (*C):			
N Scale: 1"~				Post-Treatment Efficacy (circle one) poor fair good unknown Impacts to water quality (circle one) positive negative unknown			
			_	Comments			
Do you notice	YES	No	UNKNOWN	IF YES, DESCRIBE YOUR OBSERVATIONS			
Floating Material							
Settleable Substances							
Suspended Material							
Taste and Odors							
Water coloration							
Aquatic Community Degradation							
Date Field Blank (FB) Co	ollect	ed:	_ Date Field Duplicate (FD) Collected:			
	Date	and T	ima Sampl	es COC and			

Sample	Date and Time Samples, COC and Cooler shipped to lab	Method of Shipment
Background		
Event		
FB & FD		
Post		

Fig.4
Page 1/3

Aquatic Herbicide Field Monitoring & Sampling Form – Static Water

IMPORTANT Attach Relevant Aquatic Herbicide Application Log (AHAL) Form

Agency:				_ Site Name:		
SAMPLE #1: Back Collect upstream of, or area before treatment			tment	Sampler Name: Date:		
Draw Sample Location and points of reference	d includ	de ider	ntifiable	Herbicide Applied (Surfactants?):		
				Sample Waypoint or GPS Coordinates		
				Target Vegetation:		
				Site Description:		
N				DO (mg/L): EC (μs/cm)		
1				pH: Turbidity (NTU):		
Scale: 1"~				Temp (*C):		
Do you notice	YES	No	Unknown	IF YES, DESCRIBE YOUR OBSERVATIONS		
Floating Material	1123	140	ONKNOWN	IF TES, BESCRIBE TOOK OBSERVATIONS		
Settleable Substances						
Suspended Material						
Taste and Odors						
Water coloration						
Aquatic Community Degradation						

Page 2/3

Aquatic Herbicide Field Monitoring & Sampling Form – Static Water rev 8.13

_____ Site Name:___

SAMPLE # 2: Ev	ent M	loni	toring (E	vent)			
Collect immediately do area shortly after a sufficient time has ela water would have exit	applicati psed su	ion, ich th	but after at treated	Collect Field Blank and Duplicate Samples as Needed			
The timing for the co- will be a site-specific flow rates and size o and duration of treatme	estima f the ap	tion	based on	Date: Time: Sample Waypoint or GPS Coordinates			
Draw Sample Location and include identifiable points of reference N Scale: 1"~				Length of Treated Area (ft): Application Start Date: Start Time: Application End Date: End Time: Application made with or against water flow? (Circle One) DO (mg/L): EC (µs/cm) pH: Turbidity (NTU): Temp (*C):			
Do you notice	YES	No	Hauzaiowai	In Veg. Decoping your opening			
Do You NOTICE Floating Material	TES	NO	UNKNOWN	IF YES, DESCRIBE YOUR OBSERVATIONS			
Settleable Substances							
Suspended Material							
Taste and Odors							
Water coloration							
Aquatic Community Degradation							

Page 2/3

Aquatic Herbicide Field Monitoring & Sampling Form – Static Water rev 8.13

Agenc	y:				Site Name:		
SAMPL	E # 3:				Sampler Name:		
Post-Ev	ent Moni	torin	g (P	ost)	Date: Time:		
	Collect within treatment area within 7 days of application			in 7 days	Sample Waypoint or GPS Coordinates		
Draw Sample Location and include identifiable points of reference			tifiable	DO (mg/L):	EC (µs/cm)		
					pH:	Turbidity (NTU):	
					Temp (*C):		
						t Efficacy (circle one) r fair good unknown	
N *						r quality (circle one) tive negative unknown	
Scale	: 1"~				Comments		
Do you no	TICE	YES	No	Unknow	N IF YES	S, DESCRIBE YOUR OBSERVATIONS	
Floating Ma	aterial						
Settleable S	Substances						
Suspended	l Material						
Taste and 0	Odors						
Water color	ration						
Aquatic Cor Degradation	•						
Date I	Field Blank (I	FB) Co	llecte	ed:	_ Date Field D	uplicate (FD) Collected:	
Saı	mple	Date		ime Samp er shipped	les, COC and d to lab	Method of Shipment	
Ва	ackground						
Ev	/ent						
FE	3 & FD						

Post

8.2 Monitoring Locations and Frequency

Water quality sampling for glyphosate will be conducted for one application event from each environmental setting (flowing water and non-flowing water) per year. No water quality sampling is required for applications of products that contain sodium carbonate peroxyhydrate. For application of all other algaecides and aquatic herbicides listed on the Permit, OC Public Works will collect samples from a minimum of six application events for each active ingredient in each environmental setting per year. If there are less than six application events in a year for an active ingredient, OC Public Works will collect samples for each application event in each environmental setting.

If the results from six consecutive sampling events show concentrations that are less than the applicable receiving water limitation/trigger in an environmental setting, OC Public Works will reduce the sampling frequency for that active ingredient to one per year in that environmental setting. If the annual sampling shows exceedances of the applicable receiving water limitation/trigger, OC Public Works will be required to return to sampling six applications the next year, and until sampling may be reduced again.

Sites will be chosen to represent the variations in treatment that occur, including algaecide or aquatic herbicide use, hydrology, and environmental setting, conveyance or impoundment type, seasonal, and regional variations. The exact location(s) of sample site(s) will be determined after site scouting and a decision to make an aquatic herbicide application are made per OC Public Works IPM approach. **Figure 3 or Figure 4** will be used to document sampling.

8.2.1 Sample Locations

Sampling will include background, event, and post-event monitoring as follows:

Background Monitoring: In moving water, the background (BG) sample is collected upstream of the treatment area at the time of the application event, or in the treatment area within 24 hours prior to the start of the application.

Event Monitoring: The event monitoring (Event) sample for **flowing** water is collected immediately downstream of treatment area immediately after the application event, but after sufficient time has elapsed such that treated water would have exited the treatment area.

The Event sample for **non-flowing (static)** water is collected immediately outside the treatment area immediately after the application event, but after sufficient time has elapsed such that treated water would have exited the treatment area.

The location and timing for the collection of the Event sample may be based on a number of factors including, but not limited to algae and aquatic weed density and type, flow rates, size of the treatment area and duration of treatment.

Post-Event Monitoring: The post-event monitoring (Post) sample is collected within the treatment area within one week after the application.

One full set of three samples (i.e., BG, Event and Post) will be collected during each treatment from the representative site(s) treated within the flood control system according to the monitoring frequency and

locations described earlier.

Additionally, one Field Duplicate (FD) and one Field Blank (FB) will be collected and submitted for analysis for each analyte, once per year. The FD and FB samples will be collected at the Event site immediately after application. See **Figure 3 and Figure 4** for the field sampling forms to be used.

8.3 Sample Collection

If the water depth is 6 feet or greater the sample will be collected at a depth of 3 feet. If the water depth is less than 6 feet the sample will be collected at the approximate mid-depth. As necessary, an intermediary sampling device (e.g., Van-Dorn style sampler, long-handled sampling pole, sampling pump or other equivalent means) will be used for locations that are difficult to access. Long-handled sampling poles with attached sampling container will be inverted before being lowered into the water to the desired sample depth, where it will be turned upright to collect the sample. Appropriate cleaning technique is discussed in section 8.8.4.

8.4 Field Measurements

In conjunction with sample collection, temperature will be measured in the field. Currently, OC Public Works uses YSI multi-parameter probes to measure temperature, electrical conductivity, pH, and dissolved oxygen and Hach turbidity meters are used to measure turbidity. All instruments are maintained and calibrated routinely according to manufacturer's specifications at the recommended frequency, and checked with a standard prior to each use. OC Public Works prepares its own calibration standards.

Conductivity meters are calibrated routinely and will be checked according to manufacturer's specifications with standards throughout the year (typically once per month) to evaluate instrument performance. If the calibration is outside the manufacturer's specifications, the instrument will be recalibrated. Calibration logs are maintained for all instruments to document calibration.

8.5 Sample Preservation and Transportation

If preservation is required for the monitored constituent, the preservative will be placed in the sample container by the container vendor prior to sample collection or by OC Public Works the day of sample collection. Once a sample is collected and labeled it will immediately be placed in a dark, cold (~4° C) environment, typically a cooler with ice. Delivery to the laboratory by courier will generally occur on the same day or the next day as the sample collection or in accordance with applicable sample holding times.

8.6 Sample Analysis

Table 2 shows the constituents that each sample must be analyzed for.

Table 2: Required Sample Analysis

		Reporting	Hold Time		Chemical
Analyte	EPA Method	Limit	(Days)	Container**	Preservative**
Temperature ¹	N/A	N/A	N/A	N/A	N/A
Dissolved Oxygen ¹	360.1 or 360.2	0.0 mg/L	1	1L Amber Glass	None
Turbidity ²	180.1	0.00 NTU	2	100 mL HDPE	None
Electrical Conductivity ²	120.1	0 μS/cm	28	100 mL HDPE	None
*pH ²	150.1 or 150.2	1-14	Immediately	100 mL HDPE	None
*2,4-D	8151, 8150A, 615	0.5 μg/L	7	1L Amber Glass	None
Triclopyr	8151, 8150A, 615	0.5 μg/L	7	1L Amber Glass	None
*Diquat	549	40 μg/L	7	500 mL Amber HDPE	H ₂ SO ₄
*Endothall	548.1	40 μg/L	7	100 mL Amber Glass or 2 x 40 mL VOA	None
*Fluridone	SePro FasTest, HPLC	1 ug/L	7	30 ml Amber HDPE	None
*Glyphosate	547	0.5 μg/L	14	2 x 40 mL VOA	None
*Imazamox	HPLC	50 ug/L	14	2 x 40 mL VOA	None
*Imazapyr	532m	100 ug/L	14	1 L Amber Glass	None
Nonylphenol ³	550.1m	0.5 μg/L	7	2 x 40 mL VOA	None
Penoxsulam	532m	20 ug/L	7	1 L Amber Glass	None

Notes:

Analysis not required for algaecides and aquatic herbicides containing sodium carbonate peroxyhydrate. EPA Methods are taken from NEMI 2004.

HPLC – High Performance Liquid Chromatography.

m – Modified extraction or analysis technique.

8.7 Reporting Procedures

An annual report for each reporting period, from January 1 to December 31 will be prepared by March 1 of the following year and will be submitted to the appropriate RWQCB. In years when no algaecides or aquatic herbicides are used, a letter stating no applications will be sent to the appropriate RWQCB in lieu of an annual report.

The annual report will contain the following information as described in Attachment C of the Permit:

- 1. An Executive Summary discussing compliance or violation of the Permit and the effectiveness of the APAP; and
- 2. A summary of monitoring data, including the identification of water quality improvements or degradation as a result of algaecide or aquatic herbicide application.

^{*} Signifies algaecide or aquatic herbicide active ingredient. Chemical analysis is only required for the active ingredient(s) used in treatment.

^{**} May be modified by the analytical laboratory as necessary

¹Field measured.

²May be field or laboratory measured.

³Required only when a nonylphenol-based surfactant is used.

OC Public Works will collect and retain all information on the previous reporting year. When requested by the Deputy Director or Executive Officer of the applicable RWQCB, OC Public Works will submit the annual information collected, including:

- An Executive Summary discussing compliance or violation of the Permit and the effectiveness of the APAP to reduce or prevent the discharge of pollutants associated with herbicide applications;
- 2. A summary of monitoring data, including the identification of water quality improvements or degradation as a result of algaecide or aquatic herbicide application, if appropriate, and recommendations for improvement to the APAP (including proposed BMPs) and monitoring program based on the monitoring results. All receiving water monitoring data shall be compared to applicable receiving water limitations and receiving water monitoring triggers;
- 3. Identification of BMPs and a discussion of their effectiveness in meeting the Permit requirements;
- 4. A discussion of BMP modifications addressing violations of the Permit;
- 5. A map showing the location of each treatment area;
- 6. Types and amounts of aquatic herbicides used at each application event during each application
- 7. Information on surface area and/or volume of treatment area and any other information used to calculate dosage, concentration, and quantity of each aquatic herbicide used;
- 8. Sampling results shall indicate the name of the sampling agency or organization, detailed sampling location information (including latitude and longitude or township/range/section if available), detailed map or description of each sampling area (address, cross roads, etc.), collection date, name of constituent/parameter and its concentration detected, minimum levels, method detection limits for each constituent analysis, name or description of water body sampled, and a comparison with applicable water quality standards, description of analytical QA/quality control plan. Sampling results shall be tabulated so that they are readily discernible; and
- 9. Summary of Aquatic Herbicide Application Logs (AHALs, **Figure 2**).

8.8 Sampling Methods and Guidelines

The purpose of this section is to present methods and guidelines for the collection and analysis of samples necessary to meet the APAP objective of assessing adverse impacts, if any, to beneficial uses of water bodies treated with algaecides and aquatic herbicides.

This section describes the techniques, equipment, analytical methods, and quality assurance and quality control procedures for sample collection and analysis. Guidance for the preparation of this chapter included: NPDES Storm Water Sampling Guidance Document (USEPA 1992); Guidelines and Specifications for Preparing Quality Assurance Project Plans (USEPA 1980); and U.S. Geological Survey, National Field Manual for the Collection of Water Quality Data (USGS 1995).

8.8.1 Surfacewater Sampling Techniques

As discussed in section 8.3, if the water depth is 6 feet or greater the sample will be collected at a depth of 3 feet, if the water depth is less than 6 feet the sample will be collected at the approximate middepth. As necessary, an intermediary sampling device (e.g., Van-Dorn style sampler, long-handled sampling pole, sampling pump, or other equivalent means) will be used for locations that are difficult to

access. Long-handled sampling poles with attached sampling container will be inverted before being lowered into the water to the desired sample depth, where it will be turned upright to collect the sample. Appropriate cleaning technique is discussed in section 8.8.4.

During collection, the samples will be collected in a manner that minimizes the amount of suspended sediment and debris in the sample. Surface water grab samples will be collected directly by the sample container, or by an intermediary container in the event that the sample container cannot be adequately or safely used. Intermediary samplers will be either poly (plastic/HDPE), stainless steel or glass. Any container that will be reused between sites will be washed thoroughly and triple rinsed before collection of the next sample, see section 8.8.4. Alternatively, disposable poly or glass intermediary sample containers can be used.

8.8.2 Sample Containers

Clean, empty sample containers with caps will be supplied in protective cardboard cartons or ice chests by the primary laboratory. The containers will be certified clean by either the laboratory or the container supplier. To ensure data quality control, the sampler will utilize the appropriate sample container as specified by the laboratory for each sample type. Sample container type, holding time, and appropriate preservatives are listed in **Table 2**. Each container will be affixed with a label indicating a discrete sample number for each sample location and other pertinent information.

8.8.3 Sample Preservation

Samples will be collected with bottles containing the correct preservative(s), refrigerated at four (4) degrees Celsius (C), stored in a dark place, and transported to the analytical laboratory. If needed, preservatives shall be added to sampling bottles before sampling occurs by the laboratory supplying the containers and performing the analysis or by OC Public Works the day of sample collection. Refer to **Table 2**.

8.8.4 Sampling Equipment Cleaning

In the event that sampling equipment will be used in more than one location, the equipment will be thoroughly cleaned with a non-phosphate cleaner, triple-rinsed with distilled water, and then rinsed once with the water being sampled prior to its first use at a new sample collection location.

8.8.5 Sample Packing and Shipping

All samples will be packed and transported in accordance with the required holding time for laboratory analysis.

Ice will be included in coolers containing samples that require temperature control. Samples will be packaged in the following manner:

Sample container stickers will be checked for secure attachment to each sample container.

- 2. The sample containers will be placed in the lined cooler. Bubble-wrap, suitable foam padding, or newspaper will be placed between sample containers to protect the sample containers from breakage during shipment and handling.
- 3. The Chain of Custody (COC) will accompany the sample package. The COC will indicate each unique sample identification name, time and place of sample collection, the sample collector, the required analysis, turn-around-time, and location to which data will be reported.
- 4. The cooler will then be readied for pick-up by a courier or delivered directly to the laboratory. Alternatively, samples will be temporarily stored in a secured OC Public Works refrigerator until ready for courier pickup.

8.9 Field Sampling Operations

8.9.1 Field Logbook

An electronic or hardcopy logbook will be maintained by members of the sampling team to provide a record of sample location, significant events, observations, and measurements taken during sampling. Observations and measurements should be supplemented with pictures of site conditions at the time of sampling if possible. Field logbooks are intended to provide sufficient data and observations to enable project team members to reconstruct events that occurred during the sampling. The field logbook entries will be legible, factual, detailed, and objective.

When recording observations in the field book, the sampling team will note the presence or absence of:

- 1. Floating or suspended matter;
- 2. Discoloration;
- 3. Bottom deposits;
- 4. Aquatic life;
- 5. Visible films, sheens, or coatings;
- 6. Fungi, slimes, or objectionable growths; and
- 7. Potential nuisance conditions.

See Figure 3 and Figure 4 for the forms to be used to record relevant field data when sampling.

8.9.2 Alteration of Sampling Techniques

It is possible that actual field conditions may require a modification of the procedures outlined herein. Specifically, water levels, weather, other environmental parameters and hazards including stream flow, rainfall, and irrigation water use may pose access and/or sampling problems. In such instances, variations from standard procedures and planned sampling locations and frequencies will be documented by means of appropriate entry into the field logbook.

8.9.3 Flow Estimation

A flow meter calibrated according to the manufacturer's directions will be placed as close to the center of the stream or creek as possible and a reading taken in feet per second (ft/sec). Alternatively, the time a common floating object (branch, leaf, etc.) travels a known distance will be estimated and represented

in ft/sec. A minimum distance of approximately 25 feet will be used. Flow estimation measurements will be made for all moving water sampling locations. Large channels and tidal channels may require additional or alternative flow estimation techniques, to the extent practicable.

8.9.4 Chain-of-Custody (COC)

The COC record will be employed as physical evidence of sample custody. The sampler will complete an electronic COC record to accompany each sample shipment from the field to the laboratory. The COC will specify: time, date, specific and unique sample number, requested analysis, sampler name, time and date of sample transaction between field and laboratory staff, preservative, if any, and name of receiving party at the laboratory. OC Public Works uses proprietary software that generates labels and COCs for its samples with its contract laboratory. The software incorporates standard COC documentation.

Corrections to the COC will be made by drawing a line through, initialing, and dating the error, and entering the correct information. Erasures are not permitted.

Upon receipt of the samples, laboratory personnel will check to insure that the contents of the ice chest(s) are accurately described by the COC. Upon verification of the number and type of samples and the requested analysis, a laboratory representative will sign the COC, indicating receipt of the samples.

The COC record form will be completed in duplicate. Upon sample delivery, the original copy will be left with the laboratory and a copy will be kept by the sampler, and stored with the field logbook or electronically.

8.9.5 Sample Label

The label will contain information on the unique individual sample ID (i.e. Salt Creek Channel – BG) and other pertinent information. OC Public Works utilizes proprietary software that generates labels and COCs for its samples with its contract laboratory.

Prior to sampling, a water resistant label will be completed with waterproof ink and will be affixed to the appropriate container.

8.9.6 Corrections to Documentation

Documents will not be destroyed or thrown away, even if they are illegible or contain inaccuracies that require a replacement or correction. If an error is made on a document used by an individual, that individual will make corrections by making a line through the error and entering the correct information. The erroneous information will not be obliterated. Corrections will be initialed and dated.

8.9.7 Document Control

A central file location will be established and used to store documentation such as the logbook, electronic network directory and laboratory data.

8.9.8 Sample Kit

Prior to departing to the field to collect samples, the following equipment will be prepared for use:

- Laboratory-supplied sampling bottles (one set for each sample to be collected plus spares, plus QA/QC samples)
- Sample labels (one for each sample to be collected plus spares)
- Sharpie[®] Pen or other permanent, water-proof ink marker
- Chain of Custody forms
- Field data logbook
- Flow meter (optional for moving water applications)
- Zip lock style bags for paperwork
- Non-phosphate cleaner (i.e. Liqui-Nox[®])
- Deionized or distilled water
- Ice or blue ice packs
- Clear Mailing Tape
- Cooler for samples
- Grab pole or Van-Dorn style sampler, or equivalent sampling device
- Gloves
- Rubber boots or waders
- Stop or wrist watch
- Camera

8.10 Quality Assurance and Quality Control (QA/QC)

The purpose of quality assurance and quality control (QA/QC) is to assure and control the quality of data generated during sample collection and analysis as described earlier in this document. Quality assurance and quality control are measured in a variety of ways, as described below.

8.10.1 Precision

Precision is a measure of the reproducibility of measurements under a given set of conditions. It is a quantitative measure of the variability of a group of measurements compared to the average value of the group and is expressed as the relative percent difference (RPD). Sources of error in precision (imprecision) can be related to both laboratory and field techniques. Specifically, lack of precision is caused by inconsistencies in instrument setting, measurement and sampling techniques, and record keeping.

Laboratory precision is estimated by generating analytical laboratory matrix spike (MS) and matrix spike duplicate (MSD) sample results and calculating RPD. In general, laboratory RPD values of less than 25% will be considered acceptable.

Field precision is estimated by collecting field duplicates (FDs) in the field and calculating RPD. In general, field RPD values of less than 25% will be considered acceptable. Refer to the discussion of FDs in section 8.10.5.

8.10.2 Accuracy

Accuracy is a measure of how close data are to their true values and is expressed as percent recovery (%R), which is the difference between the mean and the true value expressed as a percentage of the true value. Sources of error (inaccuracy) are the sampling process, field contamination, preservation, handling, sample matrix effects, sample preparation, analytical techniques, and instrument error.

Laboratory accuracy is estimated using reference standards, matrix spike (MS) and matrix spike duplicates (MSD) samples. Acceptable accuracy is generally between 75 and 125%. Refer to the earlier discussion of MS and MSD.

8.10.3 Completeness

Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness objective is that the sufficiently valid data is generated to allow for submittal to the SWRCB and RWQCB. Completeness will be assessed by comparing the number of valid sample results to the number of samples collected. The objective for completeness is \geq 80 %.

8.10.4 Representativeness

Representativeness refers to a sample or group of samples that reflects the predominant characteristics of the media at the sampling point. The objective in addressing representativeness is to assess whether the information obtained during the sampling and analysis represents the actual site conditions. Permitdefined sampling requirements are assumed to meet the representativeness criteria.

8.10.5 Field Duplicate

The purpose of a field duplicate (FD) is to quantify the precision, or reproducibility, of the field sampling technique. It involves the duplication of the technique used for a particular field sample collection method and the subsequent comparison of the initial and duplicate values. This comparison is measured as the relative percent difference (RPD). RPD is calculated as follows:

RPD = [(Sample1 – Sample2) / (Average of Samples 1 and 2)] X 100

An acceptable field RPD value is \leq 35%.

The FD is collected at the same time as the actual field sample and one FD per year will be collected.

8.10.6 Field Blank

The purpose of the field blank (FB) is to assure that the field sampling technique, equipment, or equipment cleaning technique or materials do not impart a false positive or negative result during the collection of the sample. A FB will be prepared with distilled water and allowed to come into contact with the sampling device in a manner identical to the actual sample. The only acceptable values for

analytes in the FB is less than the detection limit for the compounds of interest, or an expected, previously determined, background value.

The FB will be collected at the same time as the actual field sample and one FB per year will be collected.

8.10.7 Laboratory Quality Assurance and Quality Control

Laboratory precision and accuracy will be monitored by a series of laboratory-generated quality control samples. As long as sufficient sample volume is collected and submitted to the laboratory, no additional effort is required by field activities to generate laboratory quality control samples. Each set of field samples will have associated with it one each from the following set of laboratory quality control samples.

8.10.7.1 Method Blank

The purpose of the method blank (MB) is to assure that the analytical technique does not impart a false positive result during the preparation or analysis of the sample. A method blank will be prepared by the laboratory from high purity distilled or deionized water. The only acceptable values for analytes in the MB are zero or an expected, previously determined, background values.

8.10.7.2 Matrix Spike

The purpose of a matrix spike (MS) is to quantify accuracy and to assure that the analytical technique does not impart a false negative or positive result during the preparation or analysis of the sample. It involves the introduction of the analyte (or an analyte surrogate) of interest into the actual sample matrix and then quantitating it.

The amount detected divided by the amount added to the matrix is expressed as a percent recovery (%R). Acceptable values of %R range from 75% to 125%. Percent recovery is calculated as follows:

%R = [(Spike Amount Detected - Sample Value) / Amount Spiked] x 100

8.10.7.3 Matrix Spike Duplicate

The purpose of a matrix spike duplicate (MSD) is to quantify laboratory precision. An acceptable RPD is less than or equal to 25%. The MSD involves duplication of the MS resulting in two data points from which relative percent difference (RPD) is calculated as follows:

RPD = [(MS - MSD) / (Average of MS and MSD)] X 100

8.10.8 Data Validation

Data validation will use data generated from the analytical laboratory and the field. References that can be used to assist in data validation include USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 1994) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999).

The purpose of data validation is to ensure that data collected are of sufficient quality for inclusion in reports to the RWQCB. In order to serve this purpose, the following information must be available in order to evaluate data validity:

- 1. Date of sample collection required to uniquely identify sample and holding time.
- 2. Location of samples required to identify sample.
- 3. Laboratory QA/QC procedures required to assess analytical accuracy, precision, and sample integrity. A laboratory QA/QC sample set consists of a MS, a MSD, and a MB. A laboratory QA/QC sample set will be analyzed by the laboratory for each field sample batch. Sufficient sample volume and number will be supplied to the laboratory in order to prepare and evaluate the laboratory QA/QC sample set.
- 4. Analytical methods required to assess appropriateness and acceptability of analytical method used.
- 5. Detection limits required to assess lower limit of parameter identification.
- 6. Holding times, preservation, and dates of extraction and analysis required to assess if a sample was extracted and analyzed within the specified time limits and if a sample was stored at the appropriate temperature.
- 7. Field QA/QC procedures required to assess field precision and sample integrity. A field QA/QC sample set consists of FB and FD samples. A field QA/QC sample set will be analyzed by the laboratory for one sampling event per year. Sufficient sample volume and number will be collected in the field and supplied to each laboratory in order to prepare and evaluate the field QA/QC sample set.

8.10.9 Data Qualification

Data collected for compliance with the Permit will be qualified through the Analytical Lab Validation process described in 8.10.7. This process will ensure all data has been thoroughly reviewed and qualified as valid. During the data validation process, data qualifiers will be used to classify sample data. The following qualifiers will be used:

- A Acceptable. The data have satisfied each of the requirements and are quantitatively acceptable (i.e., valid) and will be used in reports.
- R Reject. Data not valid. This qualifier will be used for samples that cannot be uniquely identified by date of collection or sample location or that fail holding time, detection limit requirements, or criteria established. Invalid data will not be presented in reports submitted to the RWQCB.

8.10.10 Corrective Action

If previously described criteria for valid data are not met, then corrective action as follows will be taken:

1. The laboratory will be asked to check their quality assurance/quality control data and calculations associated with the sample in question. If the error is not found and resolved, then:

- a. The extracts or the actual samples, which will be saved until the data are validated, will be reanalyzed by the laboratory if they are within holding time limitations. These new results will be compared with the previous results. If the error is not found and resolved, then:
- b. If field analytical equipment is used, then calibration records will be reviewed. If the error is not found, then:
- c. The sampling procedure and sample preparation will be re-checked and verified. If the procedures appear to be in order and the error is not resolved, then:
- d. The data will be deemed invalid and not used.
- 2. Upon discovery of the source of an error, every attempt will be made to address the cause of the error and remedy the problem.

8.10.11 Data Reporting

The results of sampling and analysis will be summarized in the Annual Report. The data will be tabulated so that they are readily discernible.

Element 9: Procedures to Prevent Sample Contamination

OC Public Works personnel that are making aquatic herbicide applications will not be allowed to collect samples.

Sample collection will be done no closer than 50 feet from application equipment and preferably upwind. Sample collection personnel will not be allowed to handle or come into contact with aquatic pesticide application equipment, containers or personal protective equipment (PPE) used by applicators. Care will be taken by samplers to minimize into contact with any treated water or vegetation.

In the event that sampling equipment will be used in more than one location, the equipment will be thoroughly cleaned with non-phosphate cleaner, triple-rinsed uncontaminated water, and then rinsed once with the water being sampled prior to its first use at a new sample collection location, as described in 8.8.4. Gloves will be changed between sites.

Element 10: Description of BMPs

OC Public Works employs the following BMPs to ensure the safe, efficient and efficacious use of aquatic herbicides.

10.1 Measures to Prevent Spills and Spill Containment in the Event of a Spill

Applicators take care when mixing and loading aquatic herbicides and adjuvants. All label language is followed to ensure safe handling and loading of aquatic herbicides. Application equipment is regularly checked and maintained to identify and minimize the likelihood of leaks developing or failure that would lead to a spill. If possible, aquatic herbicides will be mixed and loaded in the OC Public Works yard before leaving for the application site(s).

If aquatic herbicides are spilled, they will be prevented from entering any waterbodies to the extent practicable. OC Public Works vehicles contain and staff are trained in the use of absorbent materials such as kitty litter, "pigs" and "pillows". Spills will be cleaned up according to label instructions, and all equipment used to remove spills will be properly contained and disposed of or decontaminated, as appropriate. Applicators will report spills as required by OC Public Works policy and in a manner consistent with local, state and federal requirements.

10.2 Measures to Ensure Appropriate Use Rate

The following BMPs help ensure the appropriate aquatic herbicide application rate is used.

10.2.1 Site Scouting

Prior to treatment, OC Public Works PCA and/or qualified staff scout sites to evaluate the extent to which acceptable aquatic weed thresholds have been exceeded. Thresholds are based on flow maintenance, maintenance of recreational and aesthetic beneficial uses, and the prevention of odors.

If a location is deemed to have exceeded a threshold, or aquatic weed population is anticipated to exceed a threshold based on site and weather conditions, historic aquatic weed growth, or other information, an aquatic herbicide application is considered. If the application can be made without negatively impacting the water quality, then an application is made.

10.2.2 Written Recommendations Prepared by PCA

Prior to application, a PCA licensed by California Department of Pesticide Regulation (DPR) scouts the area to be treated, makes a positive identification of pest(s) present, checks applicable product label(s) for control efficacy, and prepares a written recommendation, including rates of application, and any warnings or conditions that limit the application so that non-target flora and fauna are not adversely impacted. Licensed PCAs must complete 40 hours of continuing education every 2 years to stay licensed, and therefore are up-to-date on the latest techniques for pest control.

10.2.3 Applications Made According to Label

All aquatic herbicide applications are made according to the product label in accordance with regulations of the U.S. EPA, CalEPA, Cal OSHA, DPR, and the local Agricultural Commissioner. OC Public Works PCA and DPR-licensed Qualified Applicator Certificate (QAC) or Qualified Applicator License (QAL) holders regularly monitor updates and amendments to the label so that applications are in accordance with label directions. Licensed QALs and QACs must complete 20 hours of continuing education every 2 years to stay licensed, and therefore are up-to-date on the latest techniques for pest control.

10.2.4 Applications Made by Qualified Applicator Certificate Holders

OC Public Works QALs, QACs or OC Public Works staff under the supervision of OC Public Works QALs or QACs make applications or supervise applications recommended by the PCA. These OC Public Works staff have knowledge of proper equipment loading, nozzle selection, calibration, and operation so that spills are minimized, precise application rates are made according to the label, and only target plants are treated.

10.3 The Discharger's plan in educating its staff and herbicide applicators on how to avoid any potential adverse effects from the herbicide applications

See information above on the continuing education requirements of OC Public Works staff responsible for selection and application of aquatic herbicides.

10.4 Application Coordination to Minimize Impact of Application on Water Users

As required by the aquatic herbicide label, water users potentially affected by any water use restrictions will be notified prior to an application being made. As necessary, gates, weirs, etc. will be closed as necessary to prevent discharge of aquatic herbicides to locations identified as

10.5 Description of Measures to Prevent Fish Kills

10.5.1 Applications Made According to Label

All aquatic herbicide applications are made according to the product label in accordance with regulations of the U.S. EPA, CalEPA, DPR, Cal OSHA and the local Agricultural Commissioner. Precautions on the product label to prevent fish kills will be followed. For example, limitations on the surface water area treated will be followed to prevent dead algae or aquatic weeds from accumulating and then decaying and subsequently depressing the dissolved oxygen (DO) level. Depressed DO may adversely impact fish populations.

10.5.2 Written Recommendations Prepared by PCA

Prior to application, a PCA licensed by California Department of Pesticide Regulation (DPR) scouts the area to be treated, makes a positive identification of pest(s) present, checks applicable product label(s) for control efficacy, and prepares a written recommendation, including rates of application, and any warnings or conditions that limit the application so that fish are not adversely impacted.

10.5.3 Applications Made by Qualified Applicator Certificate Holders

OC Public Works QACs, QALs, or those under their direct supervision make applications recommended by the PCA. These applicators have knowledge of proper equipment loading, nozzle selection, calibration, and operation so that spills are minimized, precise application rates are made according to the label, and only target plants are treated. Calibration ensures that the correct quantity and rate of herbicide is applied.

Element 11: Examination of Possible Alternatives

11.1 Evaluation of Other Management Options

Treatment of aquatic weeds is determined by the application of Integrated Pest Management (IPM). For example, if a population of aquatic weeds equals or exceeds a threshold, an aquatic herbicide application is made. Thresholds are met when aquatic vegetation causes problems, typically associated with capacity, flow impediment, or sediment build-up.

Aquatic herbicide applications may also be made prior to threshold exceedance. For example, based on predicted growth rate and density, weather, water availability, and historical records and experience, aquatic weeds may reasonably be predicted to cause future problems. Accordingly, they may be treated soon after emergence. Even though aquatic weeds may not be an immediate problem at this phase, treating them before they mature reduces the amount of aquatic herbicide needed because the younger aquatic weeds are more susceptible and there is less plant mass to target. Selection of appropriate aquatic herbicides and rate of application is done based on the identification of the aquatic weed and the appearance of that aquatic weed on the product label.

11.1.1 No Action

As feasible, this technique is used. For example, consistent with the IPM program used by OC Public Works, a threshold is typically reached prior to treatment. Prior to reaching a threshold, no control is considered.

11.1.2 Prevention

Habitat Modification

After the removal of non-native terrestrial and emergent invasive species, the introduction and reestablishment of native species has been successful at the waters' edge in some cases. This technique is intended to provide competition for non-desirable species and reduce the need for algae and aquatic weed abatement only around the perimeter of the water bodies (i.e., stormwater conveyance channels), but is not possible within the channel itself. Limitations to this approach include availability of suitable native species, availability of labor to plant native species, and safe access to banks for work crews.

Other habitat modifying techniques may also be considered as appropriate for the individual target areas; for example, dredging. In areas where sedimentation has significantly impacted the capacity of the water body, dredging can increase the water volume, decrease the amount of organic matter present, and remove nutrient-containing sediment.

Native Species Establishment

After the removal of emergent non-native invasive species, the introduction and re-establishment of native species has been successful in select cases along the banks or margins of streams and rivers. This technique provides competition for non-desirable species, creates habitat, and may reduce the long-term need for emergent aquatic weed abatement. Limitations to this approach include availability of suitable native species, availability of labor to plant native species, and irrigate and cultivate until the native plant stand is established, and safe access to banks for work crews. Plant characteristics such as

growth patterns and the potential to invade areas where they are not wanted must be considered as well as the timing for introduction of native plants. This technique is expensive, takes many years, may be subject to expensive and time-consuming regulatory agency (i.e., California Department of Fish and Wildlife, Corps of Engineers, etc.) approval, and may not be feasible in all areas.

11.1.3 Mechanical or Physical Methods

Mechanical Removal

Mechanical removal of nuisance vegetation in the flood control system requires various methods including hand cutting from shore or while wading, hand-pulling aquatic weeds, weed-whacking, or mowing.

Generally, these techniques are very labor intensive per unit acre or length of water treated. Mechanical removal places personnel at risk of general water, slip, trip and fall hazards, poisonous wildlife, drowning, risks the spilling of motor oil and fuel, and can increase air pollution. Blankinship & Associates, Inc. estimates that the cost per area of mechanical removal is significantly higher than the cost of labor, product and equipment of the application of aquatic herbicides. The increased cost of mechanical aquatic weed abatement does not include the cost of the aforementioned risks (pollution abatement, workman's compensation claims, etc.).

In some instances, the use of mechanical techniques may be necessary when the use of aquatic herbicides is not practical, or vegetation is not at an appropriate growth stage. OC Public Works estimates that mechanical removal is 10 to 25 times more expensive than using chemical controls. This additional expense does not include the cost for disposal or for obtaining permits.

Environmental impacts due to the use of mechanical techniques include the creation of water-borne sediment and turbidity due to people and equipment working in the water. This suspended sediment can adversely affect aquatic species by lowering dissolved oxygen and preventing light penetration. Disturbing sediment or conveyance banks may cause additional problems including, but not limited to, new areas for aquatic weed establishment, fragmentation and re-establishment of aquatic weeds, and siltation. Many species OC Public Works hopes to control can be spread through fragmentation, and mechanical control has the potential to increase the distribution of the problem vegetation. The costs for trucking and waste disposal are not included. Waste must be taken to traditional landfills and cannot be taken to green waste disposal due to the concern that redistribution of the material may occur and subsequently result in re-establishment.

Mechanical removal has been, and will continue to be used by OC Public Works, as feasible, to remove vegetation. While effective in the short-term, regrowth or reemergence of vegetation is common.

Controlled Burns

This option is suitable for some types of emergent and terrestrial weeds. However, this option is generally not a suitable alternative control method for vegetation in the watersheds maintained by OC Public Works due to the potential adverse impact of fires in riparian and residential areas. Additionally, controlled burns create air quality concerns.

Grazing

This option is suitable for emergent and terrestrial weeds. Impacts to water quality from animal feces, increases in turbidity, nutrients, and bank erosion, and impacts to desirable species make this option unfeasible in some cases. The cost of hiring grazing animals is also generally more costly than chemical control alternatives. The urban nature of the drainage system, presence of traffic, and lack of fencing limits where grazing could be implemented within the drainage system. Grazing will be considered as an alternative control, as feasible.

Tilling or Discing

This option is not suitable for the control of aquatic or riparian vegetation because tilling or discing exposes erodible soils. OC Public Works avoids tilling and discing in and around riparian areas so as not to encourage erosion of banks and sedimentation.

11.1.4 Cultural Methods

Cultural methods used to reduce the amount of aquatic herbicides used include modifying the timing of aquatic herbicide and non-herbicide controls to prevent plants from reaching reproductive growth stages. Another cultural method is making applications before the density of aquatic vegetation is high enough to require aquatic herbicide rates or additional applications to maintain aquatic weed populations below threshold levels.

11.1.5 Biological Control Agents

Goats and sheep are often used for grazing in and along riparian areas. As discussed previously, grazing may be suitable for emergent and terrestrial weeds and is not suitable for submerged aquatic weeds or algae. Impacts to water quality from animal feces, increases in turbidity, nutrients, and bank erosion, and impacts to desirable species make this option unfeasible in some cases. The cost of hiring grazing animals is also generally more costly than aquatic herbicide control alternatives. The urban nature of the drainage system, presence of traffic, and lack of fencing limits where grazing could be implemented. Grazing will be considered as an alternative control, as feasible.

11.1.6 Algaecides and Aquatic Herbicides;

The selection of and decision to use an aquatic herbicide is based on the recommendation of a PCA. The PCA considers a variety of control options that may include mechanical and cultural techniques that alone or in combination with chemical controls are the most efficacious and protective of the environment.

OC Public Works evaluates alternative control techniques is part of IPM approach; therefore an alternative treatment may be selected as part its program. Alternative control techniques and detailed description of each of these is presented in Section 11.1. In general, alternative control techniques are expensive, labor intensive, not as effective, and cause temporary water quality degradation. The equipment and labor required to perform these techniques is not always readily available as the

removal is required during a busy general maintenance period for OC Public Works. This may cause delays in removal leading to increased plant material to remove and increased cost.

The quantity of aquatic herbicide required for an application is determined by a PCA that has followed the label directions in making a recommendation. The rate at which an aquatic herbicide is used is highly variable and depends on the type, time of year, location, and density and type of aquatic weeds, water presence, and goal of the application. All these factors are considered by the PCA prior to making a recommendation for an application.

11.2 Using the Least Intrusive Method of Aquatic Herbicide Application

OC Public Works uses specialized mechanized vehicles (trucks, all-terrain vehicles, small boats, etc.) and personnel with backpack sprayers to make algaecide and aquatic herbicide applications. Combined with the need to hold, safely transport and properly apply algaecides and aquatic herbicides, the techniques OC Public Works uses are the least intrusive methods feasible in the application settings.

Please refer to Table 1 for application methods.

11.3 Applying a decision matrix concept to the choice of the most appropriate formulation.

As previously stated, a PCA scouts the area to be treated, makes a positive identification of pest(s) present, checks appropriate aquatic herbicide product label(s) for control efficacy, and prepares a written recommendation. The written recommendation includes rates of application, and any warnings or conditions that limit the application.

The PCA may also recommend that an adjuvant be used to enhance the efficacy of the aquatic herbicide.

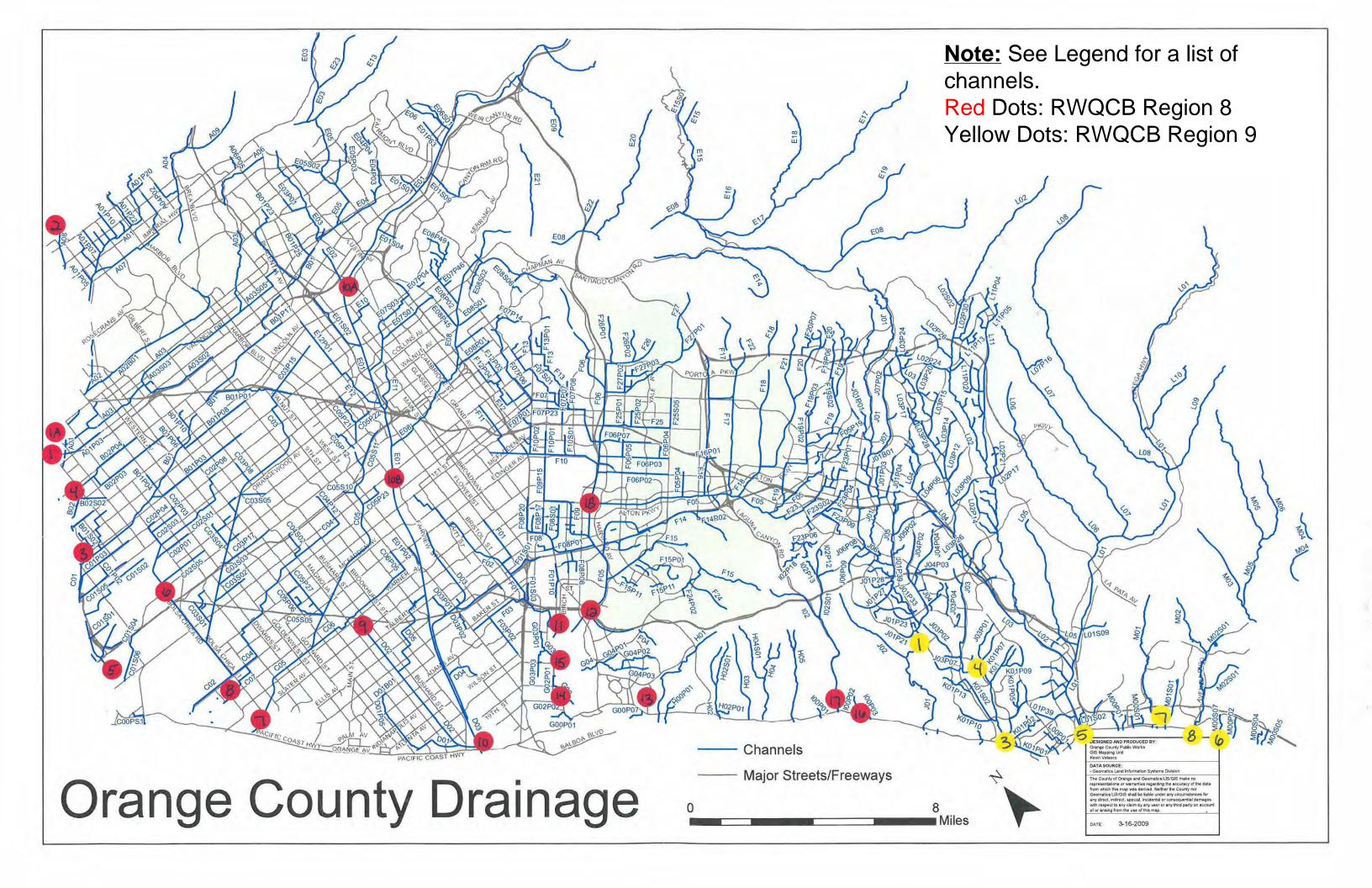
References

CVRWQCB. 2004. A Compilation of Water Quality Goals. Available:

http://www.swrcb.ca.gov/rwqcb5/water issues/water quality standards limits/water quality goals/. Updated September 2011.

National Environmental Methods Index (NEMI) 2004. Available: http://www.nemi.gov

SWRCB. 2013. Statewide General National Pollutant Discharge Elimination System (NPDES) Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications, Water Quality Order No. 2013-0002-DWQ. Available:


http://www.waterboards.ca.gov/water-issues/programs/npdes/docs/aquatic/weedcontrol/wp2013_002dwq.pdf

- USEPA. 1980. Guidelines and Specifications for Preparing Quality Assurance Project Plans.
- USEPA. 1992. NPDES Storm Water Sampling Guidance Document.
- USEPA. 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.
- USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review.
- USGS. 1995. U.S. Geological Survey, National Field Manual for the Collection of Water Quality Data.

Appendix A

RWQCB Region 8 and Region 9

Detailed Drainage Map and Legends

Channels in the RWQCB8 District

Channels in <u>Bold and Underlined</u> are monitoring locations for the tributaries below them. Exact locations for sample collections are in parentheses. Red numbers indicate location on master map.

A01 Coyote Creek Channel (D/S of Valleyview)

- A01P03 Orangethorpe Storm Channel
- A01P13 E. La Habra Storm Drain
- A02 Brea Creek Channel
- A04 Brea Canyon Channel
- A07 Imperial Channel

A03 Fullerton Creek Channel (D/S of Valleyview)

- A03S01 Buena Park Storm Channel
- A03S02 Houston Storm Channel
- A03S03 Ash Storm Channel
- A06 Loftus Diversion Channel

A08 La Mirada Creek Channel (U/S of Whittier Blvd.)

B01 Carbon Creek Channel (@Coyote Creek D/S Bloomfield)

- B01B01 Gilbert Ret. Basin
- B01B02 Crescent Ret. Basin
- B01B03 Raymond Ret. Basin
- B01B04 Placentia Ret. Basin
- B01S01 Cypress Storm Channel
- B01S03 Placentia Storm Channel

B02 Moody Creek Channel (@Coyote Creek D/S Crescent Ave)

B02S02 Dairyland Storm Channel

C01 Los Alamitos Channel (@ C01B01)

- C01B01 Los Alamitos Ret. Basin
- C01B02 Rossmoor Ret. Basin

C01 Los Alamitos Channel (cont.)

- C01S01 Kempton Storm Channel
- C01S02 Rossmoor Storm Channel
- C01S03 Montecito Storm Channel
- C01S04 Bixby Storm Channel
- C01S05 Katella Storm Channel C01S06
- C01S06 Federal Storm Channel

C02 Bolsa Chica Channel (D/S Edinger)

- C02S01 Stanton Storm Channel
- C02S03 Jonathan Storm Channel
- C03 Anaheim/Barber City Channel
- C03S01 Milan Storm Channel
- C03S02 Humboldt Storm Channel
- C03S03 Bestel Storm Channel
- C03S04 Rosalia Storm Channel
- C04 Westminster Channel

C05 E. Garden Grove/Wintersberg Channel (U/S PCH)

- C05S01 Newland Storm Drain
- C05S05 Edinger Storm Channel
- C05S10 Newhope Storm Channel
- C05S11 Lewis Storm Channel
- C06 Ocean View Channel

C07 Sunset Channel (U/S Heil Ave)

D02 Talbert Channel (@ Brookhurst St.)

- D01 Huntington Beach Channel
- D01B01 Bartlett Ret. Basin

E01 Santa Ana River (U/S PCH)

- D03 Greenville Banning Channel
- D04 Fairview Channel
- D05 Fountain Valley Channel

E01 Santa Ana River (@ E02 Confluence)

- E01S01 East Richfield Storm Drain
- E01S04 Deerfield Storm Channel
- E01S09 Walnut Canyon Storm Channel
- E02 Carbon Creek Div. Channel
- E02B01 Miller Ret. Basin
- E03 Carbon Canyon Channel
- E04 Atwood Channel
- E04D01 Yorba Linda Reservoir
- E05 Richfield Channel
- E06 Esperanza Channel
- E06S01 Blue Mud Storm Channel

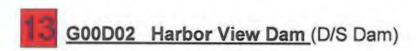
E01 Santa Ana River (U/S of 17th St.)

- E01S02 Chantilly Storm Channel
- E07 Collins Channel
- E07S01 Mariboro Storm Channel
- E07S03 Buckeye Storm Channel
- E08 Santiago Creek Channel
- E08D01 Villa Park Dam
- E08P01 La Veta Storm Drain
- E08P02 Villa Park Storm Drain
- E08SO6 Handy Creek Storm Channel
- E10 Fletcher Channel
- E10B01 Fletcher Ret. Basin
- E11 Bitterbush Channel

F01 Santa Ana / Delhi Channel (@ University Dr.)

- F02 Santa Ana Gardens Channel
- F03 Paularino Channel

F05 San Diego Creek Channel (@ MacArthur Bridge)


- F08 Lane Channel
- F08S01 Armstrong Storm Channel

F05 San Diego Creek (cont.)

- F14 San Joaquin Channel
- F14S01 Culver Storm Channel
- F16 Marshburn Channel
- F16B01 Marshburn Ret. Basin
- F16B02 Bee Canyon Ret. Basin
- F16B03 Round Canyon Ret. Basin
- F18 Agua Chinon Channel
- F18B01 Agua Chinon ret. Basin
- F19 Serrano Creek Channel
- F20 Borrego Canyon Channel
- F23 Canada Channel
- F23S02 Veeh Storm Channel
- F24 Bommer Canyon Channel

F06 Peters Canyon Channel (@ San Diego Creek Confluence)

- F06B01 Lower Peters Canyon Ret. Basin
- F06B03 Peters Canyon Reservoir
- F06S03 Como Storm Channel
- F07 El Modina / Irvine Channel
- F07S01 La Collina / Redhill Storm Drain
- F10 Santa Ana / Santa Fe Channel
- F11 South West Tustin Channel
- F12 North Tustin Channel
- F13 Redhill Channel
- F25 Central Irvine Channel
- F25S02 Monroe Channel
- F25B01 Trabuco Ret. Basin
- F27B01 Hicks Canyon Ret. Basin
- F27B02 East Hicks Canyon Ret. Basin

- G02 East Costa Mesa Channel (U/S Santiago Dr.)
- G03 Santa Isebella Channel (D/S Irvine Ave 300')
- 100P03 Bluebird Storm Drain (U/S Glenneyre St.)
- 102 Laguna Canyon Channel (U/S Beach St.)
- I02B01 Laguna Audubon Ret. Basin

Channels in the RWQCB9 District

Channels in <u>Bold and Underlined</u> are monitoring locations for the tributaries below them. Exact locations for sample collections are in parentheses. Yellow numbers indicate location on master map.

- 1 J01 Aliso Creek Channel (U/S Awma Rd.)
- J04 Narco Channel
- J07 English Canyon Channel
- 3 K01 Salt Creek Channel (@ Pacific Ocean)
- 4 J03P01 Niguel Storm Drain (U/S Niguel Rd.)
- 5 L01 San Juan Creek Channel (D/S PCH)
- L01S01 Del Obispo Storm Channel
- L01S02 Capistrano Beach Storm Channel
- L02 Trabuco Creek Channel
- L02P02 Casitas Capistrano Storm Drain
- L03 Oso Creek Channel
- L04 La Paz Channel
- L06 Canada Chiquita
- L11P03
- L11P04
- L11P07
- 6 M00S07 Marquita Storm Channel (@ Outlet at Pacific Ocean)
- 7 M01 Prima Deshecha Canada (@ Ave. Vaquero)
- M01S01 Cascadita Canyon Storm Channel
- 8 M02 Segunda Deshecha Canyon Channel
- (@ Pacific Ocean D/S Parking Lot)